Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

High memory on 32-bit systems

Regarding the kernel lowmem region that we briefly discussed previously, an interesting observation ensues. On a 32-bit system with, say, a 3:1 (GB) VM split (just as Figure 7.10 depicts), a system with (say) 512 MB of RAM will have its 512 MB RAM direct-mapped into the kernel starting at PAGE_OFFSET (3 GB or KVA 0xc000 0000). This is quite clear.

But think about it: what would happen if the system has a lot more RAM, say, 2 GB? Now, it's obvious that we cannot direct-map the whole of the RAM into the lowmem region. It just cannot fit (as, in this example, the entire available kernel VAS is just a gigabyte and RAM is 2 gigabytes)! So, on a 32-bit Linux OS, a certain amount of memory (typically 768 MB on the IA-32) is allowed to be direct-mapped and thus falls into the lowmem region. The remaining RAM is indirectly mapped into another memory zone called ZONE_HIGHMEM (we think of it as a high-memory region or zone...