Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

The workings of the page allocator

The actual (de)allocation strategy can be explained by using a simple example. Let's say a device driver requests 128 KB of memory. To fulfill this request, the (simplified and conceptual) page allocator algorithm will do this:

  1. The algorithm expresses the amount to be allocated (128 KB here) in pages. Thus, here, it's (assuming a page size of 4 KB) 128/4 = 32 pages.
  2. Next, it determines to what power 2 must be raised to get 32. That's log232, which is 5 (as 25 is 32).
  3. Now, it checks the list on order 5 of the appropriate node:zone page allocator freelist. If a memory chunk is available (it will be of size 25 pages = 128 KB), dequeue it from the list, update the list, and allocate it to the requester. Job done! Return to caller.
Why do we say of the appropriate node:zone page allocator freelist? Does that mean there's more than one of them? Yes, indeed! We repeat: the reality...