Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Deploying our lowlevel_mem_lkm kernel module

Okay, time to see our kernel module in action! Let's build and deploy it on both a Raspberry Pi 4 (running the default Raspberry Pi OS) and on an x86_64 VM (running Fedora 31).

On the Raspberry Pi 4 Model B (here running Raspberry Pi kernel version 5.4.79-v7l+), we build and then insmod(8) our lowlevel_mem_lkm kernel module. The following screenshot shows the output:

Figure 8.5 – The lowlevel_mem_lkm kernel module's output on a Raspberry Pi 4 Model B

Check it out! In step 0 of the output in Figure 8.6 our show_phy_pages() library routine clearly shows that KVA 0xc000 0000 has PA 0x0, KVA 0xc000 1000 has pa 0x1000, and so on, for five pages (along with the PFN on the right); you can literally see the 1:1 identity mapping of physical RAM page frames to kernel virtual pages (in the lowmem region of the kernel segment)!

Next, the initial memory allocation with the ...