Book Image

Hands-On Deep Learning for Games

By : Micheal Lanham
Book Image

Hands-On Deep Learning for Games

By: Micheal Lanham

Overview of this book

The number of applications of deep learning and neural networks has multiplied in the last couple of years. Neural nets has enabled significant breakthroughs in everything from computer vision, voice generation, voice recognition and self-driving cars. Game development is also a key area where these techniques are being applied. This book will give an in depth view of the potential of deep learning and neural networks in game development. We will take a look at the foundations of multi-layer perceptron’s to using convolutional and recurrent networks. In applications from GANs that create music or textures to self-driving cars and chatbots. Then we introduce deep reinforcement learning through the multi-armed bandit problem and other OpenAI Gym environments. As we progress through the book we will gain insights about DRL techniques such as Motivated Reinforcement Learning with Curiosity and Curriculum Learning. We also take a closer look at deep reinforcement learning and in particular the Unity ML-Agents toolkit. By the end of the book, we will look at how to apply DRL and the ML-Agents toolkit to enhance, test and automate your games or simulations. Finally, we will cover your possible next steps and possible areas for future learning.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: The Basics
6
Section 2: Deep Reinforcement Learning
14
Section 3: Building Games

Exercises

Complete the following exercises in your own time and to improve your own learning experience. Improving your understanding of the material will make you a more successful deep learner, and you will likely enjoy this book better as well:

  1. In the Chapter_2_1.py example, change the Conv2D layers to use a different filter size. Run the sample again, and see what effect this has on training performance and accuracy.
  2. Comment out or delete a couple of the MaxPooling layers and corresponding UpSampling layers in the Chapter_2_1.py example. Remember, if you remove a pooling layer between layers 2 and 3, you likewise need to remove the up-sampling to remain consistent. Run the sample again, and see what effect this has on training time, accuracy, and performance.
  3. Alter the Conv2D layers in the Chapter_2_2.py example using a different filter size. See what effect this has on training...