Book Image

Windows APT Warfare

By : Sheng-Hao Ma
5 (2)
Book Image

Windows APT Warfare

5 (2)
By: Sheng-Hao Ma

Overview of this book

An Advanced Persistent Threat (APT) is a severe form of cyberattack that lies low in the system for a prolonged time and locates and then exploits sensitive information. Preventing APTs requires a strong foundation of basic security techniques combined with effective security monitoring. This book will help you gain a red team perspective on exploiting system design and master techniques to prevent APT attacks. Once you’ve understood the internal design of operating systems, you’ll be ready to get hands-on with red team attacks and, further, learn how to create and compile C source code into an EXE program file. Throughout this book, you’ll explore the inner workings of how Windows systems run and how attackers abuse this knowledge to bypass antivirus products and protection. As you advance, you’ll cover practical examples of malware and online game hacking, such as EXE infection, shellcode development, software packers, UAC bypass, path parser vulnerabilities, and digital signature forgery, gaining expertise in keeping your system safe from this kind of malware. By the end of this book, you’ll be well equipped to implement the red team techniques that you've learned on a victim's computer environment, attempting to bypass security and antivirus products, to test its defense against Windows APT attacks.
Table of Contents (17 chapters)
1
Part 1 – Modern Windows Compiler
5
Part 2 – Windows Process Internals
9
Part 3 – Abuse System Design and Red Team Tips

PE Parser example

This example is from the PE Parser project. It can be found in the Chapter#2 folder of this book’s GitHub project, which is publicly available. To save space, we only extracted the highlighted code; you should refer to the complete source code of the project for more details.

This is a simple tool written in C/C++ that can read any EXE content into memory with fopen and fread and save it in the ptrToBinary pointer, as shown in Figure 2.4:

Figure 2.4 – Example of PE Parser code

Figure 2.4 – Example of PE Parser code

Let’s take a look at the preceding code in more detail:

  • Lines 2-7: DOS Header must be present at the beginning of the program. We can get the NT Header offset from its e_lfanew field, and then add this offset to the base address of the entire binary. Therefore, we have successfully obtained the DOS and NT Headers.
  • Line 4: We check whether the magic number of the DOS Header is MZ and the magic number of the NT Headers is PE\x00...