Book Image

Windows APT Warfare

By : Sheng-Hao Ma
5 (2)
Book Image

Windows APT Warfare

5 (2)
By: Sheng-Hao Ma

Overview of this book

An Advanced Persistent Threat (APT) is a severe form of cyberattack that lies low in the system for a prolonged time and locates and then exploits sensitive information. Preventing APTs requires a strong foundation of basic security techniques combined with effective security monitoring. This book will help you gain a red team perspective on exploiting system design and master techniques to prevent APT attacks. Once you’ve understood the internal design of operating systems, you’ll be ready to get hands-on with red team attacks and, further, learn how to create and compile C source code into an EXE program file. Throughout this book, you’ll explore the inner workings of how Windows systems run and how attackers abuse this knowledge to bypass antivirus products and protection. As you advance, you’ll cover practical examples of malware and online game hacking, such as EXE infection, shellcode development, software packers, UAC bypass, path parser vulnerabilities, and digital signature forgery, gaining expertise in keeping your system safe from this kind of malware. By the end of this book, you’ll be well equipped to implement the red team techniques that you've learned on a victim's computer environment, attempting to bypass security and antivirus products, to test its defense against Windows APT attacks.
Table of Contents (17 chapters)
1
Part 1 – Modern Windows Compiler
5
Part 2 – Windows Process Internals
9
Part 3 – Abuse System Design and Red Team Tips

Examples of disguising and hiding loaded DLLs

The following example is the module_disguise.c code under the Chapter#3 folder of the GitHub project, which is publicly available in this book's repository. In order to save space, this book only extracts the highlighted code; please refer to the complete source code to see all the details of the project.

In the previous section, you have seen that we can crawl the PEB→LDR structure in dynamic memory to get the desired function module image base address. The next question is whether the information recorded in these dynamic modules can be forged for malicious use. The answer is yes. In this section, we design two functions: renameDynModule and HideModule. The former is used to disguise dynamic module information with confusing paths and names, while the latter is used to hide the specified dynamically loaded module from the record.

Figure 3.17 shows the renameDynModule function, which has only one input parameter for the...