Book Image

Windows APT Warfare

By : Sheng-Hao Ma
5 (2)
Book Image

Windows APT Warfare

5 (2)
By: Sheng-Hao Ma

Overview of this book

An Advanced Persistent Threat (APT) is a severe form of cyberattack that lies low in the system for a prolonged time and locates and then exploits sensitive information. Preventing APTs requires a strong foundation of basic security techniques combined with effective security monitoring. This book will help you gain a red team perspective on exploiting system design and master techniques to prevent APT attacks. Once you’ve understood the internal design of operating systems, you’ll be ready to get hands-on with red team attacks and, further, learn how to create and compile C source code into an EXE program file. Throughout this book, you’ll explore the inner workings of how Windows systems run and how attackers abuse this knowledge to bypass antivirus products and protection. As you advance, you’ll cover practical examples of malware and online game hacking, such as EXE infection, shellcode development, software packers, UAC bypass, path parser vulnerabilities, and digital signature forgery, gaining expertise in keeping your system safe from this kind of malware. By the end of this book, you’ll be well equipped to implement the red team techniques that you've learned on a victim's computer environment, attempting to bypass security and antivirus products, to test its defense against Windows APT attacks.
Table of Contents (17 chapters)
1
Part 1 – Modern Windows Compiler
5
Part 2 – Windows Process Internals
9
Part 3 – Abuse System Design and Red Team Tips

Examples of writing shellcode in x86

Now that we have covered the Windows PE implementation for static memory distribution and dynamic memory arrangement, and how to successfully call the system function pointer, we will begin this section with a further discussion on using what we have learned to develop 32-bit shellcode with x86 commands on our own.

The following example is the 32b_shellcode.asm source code in the Chapter#4 folder of the GitHub project. In order to save space, this book only extracts the highlighted code; please refer to the full project for the complete source code.

As this is a demonstration of 32-bit shellcode development, we need to use a compiler to help us translate the x86 script into machine code that the chip can read. It is recommended that readers practice this section by downloading the open source x86 assembler Moska (github.com/aaaddress1/moska) written by the author of this book, which can compile any x86 script based on the Keystone engine and...