Book Image

Windows APT Warfare

By : Sheng-Hao Ma
5 (2)
Book Image

Windows APT Warfare

5 (2)
By: Sheng-Hao Ma

Overview of this book

An Advanced Persistent Threat (APT) is a severe form of cyberattack that lies low in the system for a prolonged time and locates and then exploits sensitive information. Preventing APTs requires a strong foundation of basic security techniques combined with effective security monitoring. This book will help you gain a red team perspective on exploiting system design and master techniques to prevent APT attacks. Once you’ve understood the internal design of operating systems, you’ll be ready to get hands-on with red team attacks and, further, learn how to create and compile C source code into an EXE program file. Throughout this book, you’ll explore the inner workings of how Windows systems run and how attackers abuse this knowledge to bypass antivirus products and protection. As you advance, you’ll cover practical examples of malware and online game hacking, such as EXE infection, shellcode development, software packers, UAC bypass, path parser vulnerabilities, and digital signature forgery, gaining expertise in keeping your system safe from this kind of malware. By the end of this book, you’ll be well equipped to implement the red team techniques that you've learned on a victim's computer environment, attempting to bypass security and antivirus products, to test its defense against Windows APT attacks.
Table of Contents (17 chapters)
1
Part 1 – Modern Windows Compiler
5
Part 2 – Windows Process Internals
9
Part 3 – Abuse System Design and Red Team Tips

Examples of a DLL file analyzer

The following examples are from the peExportParser project in the Chapter#4 folder of the GitHub project. In order to save space, this book only extracts the highlighted code; please refer to the full source code to see the full project, which is publicly available in this book's repository.

Let’s put what we have learned in practice and try to scan the entire DLL module for named functions in a purely static situation. As the analysis will be done in a purely static state, the first challenge will be that the entire EAT contains all its data as RVAs (i.e., dynamic file-mapped offsets). Therefore, we need to construct a function to help us automate the conversion of RVAs back into offsets relative to the current static file contents to capture the data correctly. Figure 4.10 shows a simple function, rvaToOffset, that helps us with this process:

Figure 4.10 – The code of the rvaToOffset function

Figure 4.10 – The code of the rvaToOffset function

In Chapter...