Book Image

Windows APT Warfare

By : Sheng-Hao Ma
5 (2)
Book Image

Windows APT Warfare

5 (2)
By: Sheng-Hao Ma

Overview of this book

An Advanced Persistent Threat (APT) is a severe form of cyberattack that lies low in the system for a prolonged time and locates and then exploits sensitive information. Preventing APTs requires a strong foundation of basic security techniques combined with effective security monitoring. This book will help you gain a red team perspective on exploiting system design and master techniques to prevent APT attacks. Once you’ve understood the internal design of operating systems, you’ll be ready to get hands-on with red team attacks and, further, learn how to create and compile C source code into an EXE program file. Throughout this book, you’ll explore the inner workings of how Windows systems run and how attackers abuse this knowledge to bypass antivirus products and protection. As you advance, you’ll cover practical examples of malware and online game hacking, such as EXE infection, shellcode development, software packers, UAC bypass, path parser vulnerabilities, and digital signature forgery, gaining expertise in keeping your system safe from this kind of malware. By the end of this book, you’ll be well equipped to implement the red team techniques that you've learned on a victim's computer environment, attempting to bypass security and antivirus products, to test its defense against Windows APT attacks.
Table of Contents (17 chapters)
1
Part 1 – Modern Windows Compiler
5
Part 2 – Windows Process Internals
9
Part 3 – Abuse System Design and Red Team Tips

Windows linker – packing binary data into PE format

In the previous section, we assumed some memory distribution during the program's compilation. For example, the default EXE module image base should be at 0x400000 so that executable content should be placed. The .text section should be placed at 0x401000 above its image base. As we said, the .idata section is used to store the import address table, so the question is who or what is responsible for filling the import address table?

The answer is that every OS has an application loader, which is designed to fill all these tasks correctly when creating a process from a static program. However, there is a lot of information that will only be known at the compiling time and not by the system developer, such as the following:

  • Does the program want to enable Address Space Layout Randomization (ASLR) or Data Execution Prevention (DEP)?
  • Where is the main(int, char) function in the .text section written by the developer?
  • How much of the total memory is used by the execution module during the dynamic phase?

Microsoft has therefore introduced the PE format, which is essentially an extension to the COFF file, with an additional optional header structure to record the information required by the Windows program loader to correct the process. The following chapters will focus on playing with the various structures of the PE format so that you can write an executable file by hand on a whiteboard.

All you need to know now is that a PE executable has some key features:

  • Code content: Usually stored as machine code in the .text section
  • Import address tables: To allow the loader to fill in the function addresses and enable the program to get them correctly
  • Optional header: This structure allows the loader to read and know how to correct the current dynamic module

Here is an example in Figure 1.5:

Figure 1.5 – Minimalist architecture of the program

Figure 1.5 – Minimalist architecture of the program

msgbox.exe is a minimalist Windows program with only three sections: .text, .rdata, and .idata. After dynamic execution, the system application loader sequentially extracts the content of the three sections and writes them each to the offset of 0x1000, 0x2000, and 0x3000 relative to the current PE module (msgbox.exe).

In this section, we learned that the application loader is responsible for correcting and filling the program content to create a static program file into a process.