Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Automatic feature engineering

Feature engineering is the second step of a typical machine learning pipeline (see Figure 13.1). It consists of three major steps: feature selection, feature construction, and feature mapping. Let’s look at each of them in turn:

Feature selection aims at selecting a subset of meaningful features by discarding those that are making little contribution to the learning task. In this context, “meaningful” truly depends on the application and the domain of your specific problem.

Feature construction has the goal of building new derived features, starting from the basic ones. Frequently, this technique is used to allow better generalization and to have a richer representation of the data.

Feature mapping aims at altering the original feature space by means of a mapping function. This can be implemented in multiple ways; for instance, it can use autoencoders (see Chapter 8), PCA (see Chapter 7), or clustering (see Chapter 7)...