Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Deep convolutional neural networks

A Deep Convolutional Neural Network (DCNN) consists of many neural network layers. Two different types of layers, convolutional and pooling (i.e., subsampling), are typically alternated. The depth of each filter increases from left to right in the network. The last stage is typically made of one or more fully connected layers.

Typical_cnn.png

Figure 3.1: An example of a DCNN

There are three key underlying concepts for ConvNets: local receptive fields, shared weights, and pooling. Let’s review them together.

Local receptive fields

If we want to preserve the spatial information of an image or other form of data, then it is convenient to represent each image with a matrix of pixels. Given this, a simple way to encode the local structure is to connect a submatrix of adjacent input neurons into one single hidden neuron belonging to the next layer. That single hidden neuron represents one local receptive field. Note that this operation is named...