Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

C/G/T processing units

In this section we discuss CPUs, GPUs, and TPUs. Before discussing TPUs, it will be useful for us to review CPUs and GPUs.

CPUs and GPUs

You are probably somewhat familiar with the concept of a CPU, a general-purpose chip sitting in each computer, tablet, and smartphone. CPUs are in charge of all of the computations: from logical controls, to arithmetic, to register operations, to operations with memory, and many others. CPUs are subject to the well-known Moore’s law [1], which states that the number of transistors in a dense integrated circuit doubles about every two years.

Many people believe that we are currently in an era where this trend cannot be sustained for long, and indeed it has already declined during the past decade. Therefore, we need some additional technology if we want to support the demand for faster and faster computation to process the ever-growing amount of data that is available out there.

One improvement came from...