Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

An overview of federated learning at the edge

As discussed, edge computing is a distributed computing model that brings computation and data closer to the location where it is needed.

Now, let’s introduce Federated Learning (FL) [8] at the edge, starting with two use cases.

Suppose you built an app for playing music on mobile devices and then you want to add recommendation features aimed at helping users to discover new songs they might like. Is there a way to build a distributed model that leverages each user’s experience without disclosing any private data?

Suppose you are a car manufacturer producing millions of cars connected via 5G networks, and then you want to build a distributed model for optimizing each car’s fuel consumption. Is there a way to build such a model without disclosing the driving behavior of each user?

Traditional machine learning requires you to have a centralized repository for training data either on your desktop, in your...