Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Character and subword embeddings

Another evolution of the basic word embedding strategy has been to look at character and subword embeddings instead of word embeddings. Character-level embeddings were first proposed by Xiang and LeCun [17] and have some key advantages over word embeddings.

First, a character vocabulary is finite and small – for example, a vocabulary for English would contain around 70 characters (26 characters, 10 numbers, and the rest special characters), leading to character models that are also small and compact. Second, unlike word embeddings, which provide vectors for a large but finite set of words, there is no concept of out-of-vocabulary for character embeddings, since any word can be represented by the vocabulary. Third, character embeddings tend to be better for rare and misspelled words because there is much less imbalance for character inputs than for word inputs.

Character embeddings tend to work better for applications that require the...