Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Video

In this section, we are going to discuss how to use CNNs with videos and the different techniques that we can use.

Classifying videos with pretrained nets in six different ways

Classifying videos is an area of active research because of the large amount of data needed for processing this type of media. Memory requirements are frequently reaching the limits of modern GPUs and a distributed form of training on multiple machines might be required. Researchers are currently exploring different directions of investigation, with increasing levels of complexity from the first approach to the sixth, as described below. Let’s review them:

  • The first approach consists of classifying one video frame at a time by considering each one of them as a separate image processed with a 2D CNN. This approach simply reduces the video classification problem to an image classification problem. Each video frame “emits” a classification output, and the video is...