Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Summary

In this chapter, we discussed the math behind deep learning. Put simply, a deep learning model computes a function given an input vector to produce the output. The interesting part is that it can literally have billions of parameters (weights) to be tuned. Backpropagation is a core mathematical algorithm used by deep learning for efficiently training artificial neural networks, following a gradient descent approach that exploits the chain rule. The algorithm is based on two steps repeated alternatively: the forward step and the backstep.

During the forward step, inputs are propagated through the network to predict the outputs. These predictions might be different from the true values given to assess the quality of the network. In other words, there is an error and our goal is to minimize it. This is where the backstep plays a role, by adjusting the weights of the network to minimize the error. The error is computed via loss functions such as Mean Squared Error (MSE),...