Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

The basic RNN cell

Traditional multilayer perceptron neural networks make the assumption that all inputs are independent of each other. This assumption is not true for many types of sequence data. For example, words in a sentence, musical notes in a composition, stock prices over time, or even molecules in a compound are examples of sequences where an element will display a dependence on previous elements.

RNN cells incorporate this dependence by having a hidden state, or memory, that holds the essence of what has been seen so far. The value of the hidden state at any point in time is a function of the value of the hidden state at the previous time step, and the value of the input at the current time step, that is:

Here, ht and ht-1 are the values of the hidden states at the time t and t-1 respectively, and xt is the value of the input at time t. Notice that the equation is recursive, that is, ht-1 can be represented in terms of ht-2 and xt-1, and so on, until the beginning...