Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Deep Inception V3 for transfer learning

Transfer learning is a very powerful deep learning technique that has applications in a number of different domains. The idea behind transfer learning is very simple and can be explained with an analogy. Suppose you want to learn a new language, say Spanish. Then it could be useful to start from what you already know in a different language, say English.

Following this line of thinking, computer vision researchers now commonly use pretrained CNNs to generate representations for novel tasks [1], where the dataset may not be large enough to train an entire CNN from scratch. Another common tactic is to take the pretrained ImageNet network and then fine-tune the entire network to the novel task. For instance, we can take a network trained to recognize 10 categories of music and fine-tune it to recognize 20 categories of movies.

Inception V3 is a very deep ConvNet developed by Google [2]. tf.Keras implements the full network, as described...