Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Sparse autoencoder

The autoencoder we covered in the previous section works more like an identity network; it simply reconstructs the input. The emphasis is on reconstructing the image at the pixel level, and the only constraint is the number of units in the bottleneck layer. While it is interesting, pixel-level reconstruction is primarily a compression mechanism and does not necessarily ensure that the network will learn abstract features from the dataset. We can ensure that a network learns abstract features from the dataset by adding further constraints.

In sparse autoencoders, a sparse penalty term is added to the reconstruction error. This tries to ensure that fewer units in the bottleneck layer will fire at any given time. We can include the sparse penalty within the encoder layer itself.

In the following code, you can see that the dense layer of Encoder now has an additional parameter, activity_regularizer:

class SparseEncoder(K.layers.Layer):
    def __init__...