Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

By : Amita Kapoor, Antonio Gulli, Sujit Pal
5 (2)
Book Image

Deep Learning with TensorFlow and Keras – 3rd edition - Third Edition

5 (2)
By: Amita Kapoor, Antonio Gulli, Sujit Pal

Overview of this book

Deep Learning with TensorFlow and Keras teaches you neural networks and deep learning techniques using TensorFlow (TF) and Keras. You'll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow 2.x focuses on simplicity and ease of use, with updates like eager execution, intuitive higher-level APIs based on Keras, and flexible model building on any platform. This book uses the latest TF 2.0 features and libraries to present an overview of supervised and unsupervised machine learning models and provides a comprehensive analysis of deep learning and reinforcement learning models using practical examples for the cloud, mobile, and large production environments. This book also shows you how to create neural networks with TensorFlow, runs through popular algorithms (regression, convolutional neural networks (CNNs), transformers, generative adversarial networks (GANs), recurrent neural networks (RNNs), natural language processing (NLP), and graph neural networks (GNNs)), covers working example apps, and then dives into TF in production, TF mobile, and TensorFlow with AutoML.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Introduction to autoencoders

Autoencoders are a class of neural networks that attempt to recreate input as their target using backpropagation. An autoencoder consists of two parts: an encoder and a decoder. The encoder will read the input and compress it to a compact representation, and the decoder will read the compact representation and recreate the input from it. In other words, the autoencoder tries to learn the identity function by minimizing the reconstruction error.

They have an inherent capability to learn a compact representation of data. They are at the center of deep belief networks and find applications in image reconstruction, clustering, machine translation, and much more.

You might think that implementing an identity function using deep neural networks is boring; however, the way in which this is done makes it interesting. The number of hidden units in the autoencoder is typically fewer than the number of input (and output) units. This forces the encoder to...