Book Image

Asynchronous Programming in Rust

By : Carl Fredrik Samson
5 (2)
Book Image

Asynchronous Programming in Rust

5 (2)
By: Carl Fredrik Samson

Overview of this book

Step into the world of asynchronous programming with confidence by conquering the challenges of unclear concepts with this hands-on guide. Using functional examples, this book simplifies the trickiest concepts, exploring goroutines, fibers, futures, and callbacks to help you navigate the vast Rust async ecosystem with ease. You’ll start by building a solid foundation in asynchronous programming and explore diverse strategies for modeling program flow. The book then guides you through concepts like epoll, coroutines, green threads, and callbacks using practical examples. The final section focuses on Rust, examining futures, generators, and the reactor-executor pattern. You’ll apply your knowledge to create your own runtime, solidifying expertise in this dynamic domain. Throughout the book, you’ll not only gain proficiency in Rust's async features but also see how Rust models asynchronous program flow. By the end of the book, you'll possess the knowledge and practical skills needed to actively contribute to the Rust async ecosystem.
Table of Contents (16 chapters)
Free Chapter
1
Part 1:Asynchronous Programming Fundamentals
5
Part 2:Event Queues and Green Threads
8
Part 3:Futures and async/await in Rust

Experimenting with our new runtime

If you remember from Chapter 7, we implemented a join_all method to get our futures running concurrently. In libraries such as Tokio, you’ll find a join_all function too, and the slightly more versatile FuturesUnordered API that allows you to join a set of predefined futures and run them concurrently.

These are convenient methods to have, but it does force you to know which futures you want to run concurrently in advance. If the futures you run using join_all want to spawn new futures that run concurrently with their “parent” future, there is no way to do that using only these methods.

However, our newly created spawn functionality does exactly this. Let’s put it to the test!

An example using concurrency

Note

The exact same version of this program can be found in the ch08/c-runtime-executor folder.

Let’s try a new program that looks like this:

fn main() {
    let mut executor...