Book Image

Asynchronous Programming in Rust

By : Carl Fredrik Samson
5 (2)
Book Image

Asynchronous Programming in Rust

5 (2)
By: Carl Fredrik Samson

Overview of this book

Step into the world of asynchronous programming with confidence by conquering the challenges of unclear concepts with this hands-on guide. Using functional examples, this book simplifies the trickiest concepts, exploring goroutines, fibers, futures, and callbacks to help you navigate the vast Rust async ecosystem with ease. You’ll start by building a solid foundation in asynchronous programming and explore diverse strategies for modeling program flow. The book then guides you through concepts like epoll, coroutines, green threads, and callbacks using practical examples. The final section focuses on Rust, examining futures, generators, and the reactor-executor pattern. You’ll apply your knowledge to create your own runtime, solidifying expertise in this dynamic domain. Throughout the book, you’ll not only gain proficiency in Rust's async features but also see how Rust models asynchronous program flow. By the end of the book, you'll possess the knowledge and practical skills needed to actively contribute to the Rust async ecosystem.
Table of Contents (16 chapters)
Free Chapter
1
Part 1:Asynchronous Programming Fundamentals
5
Part 2:Event Queues and Green Threads
8
Part 3:Futures and async/await in Rust

epoll, kqueue, and IOCP

epoll is the Linux way of implementing an event queue. In terms of functionality, it has a lot in common with kqueue. The advantage of using epoll over other similar methods on Linux, such as select or poll, is that epoll was designed to work very efficiently with a large number of events.

kqueue is the macOS way of implementing an event queue (which originated from BSD) in operating systems such as FreeBSD and OpenBSD. In terms of high-level functionality, it’s similar to epoll in concept but different in actual use.

IOCP is the way Windows handle this type of event queue. In Windows, a completion port will let you know when an event has been completed. Now, this might sound like a minor difference, but it’s not. This is especially apparent when you want to write a library since abstracting over both means you’ll either have to model IOCP as readiness-based or model epoll/kqueue as completion-based.

Lending out a buffer to the...