Book Image

Asynchronous Programming in Rust

By : Carl Fredrik Samson
5 (2)
Book Image

Asynchronous Programming in Rust

5 (2)
By: Carl Fredrik Samson

Overview of this book

Step into the world of asynchronous programming with confidence by conquering the challenges of unclear concepts with this hands-on guide. Using functional examples, this book simplifies the trickiest concepts, exploring goroutines, fibers, futures, and callbacks to help you navigate the vast Rust async ecosystem with ease. You’ll start by building a solid foundation in asynchronous programming and explore diverse strategies for modeling program flow. The book then guides you through concepts like epoll, coroutines, green threads, and callbacks using practical examples. The final section focuses on Rust, examining futures, generators, and the reactor-executor pattern. You’ll apply your knowledge to create your own runtime, solidifying expertise in this dynamic domain. Throughout the book, you’ll not only gain proficiency in Rust's async features but also see how Rust models asynchronous program flow. By the end of the book, you'll possess the knowledge and practical skills needed to actively contribute to the Rust async ecosystem.
Table of Contents (16 chapters)
Free Chapter
1
Part 1:Asynchronous Programming Fundamentals
5
Part 2:Event Queues and Green Threads
8
Part 3:Futures and async/await in Rust

Fibers and green threads

Note!

This is an example of M:N threading. Many tasks can run concurrently on one OS thread. Fibers and green threads are often referred to as stackful coroutines.

The name “green threads” originally stems from an early implementation of an M:N threading model used in Java and has since been associated with different implementations of M:N threading. You will encounter different variations of this term, such as “green processes” (used in Erlang), which are different from the ones we discuss here. You’ll also see some that define green threads more broadly than we do here.

The way we define green threads in this book makes them synonymous with fibers, so both terms refer to the same thing going forward.

The implementation of fibers and green threads implies that there is a runtime with a scheduler that’s responsible for scheduling what task (M) gets time to run on the OS thread (N). There are many more tasks...