Book Image

Asynchronous Programming in Rust

By : Carl Fredrik Samson
5 (2)
Book Image

Asynchronous Programming in Rust

5 (2)
By: Carl Fredrik Samson

Overview of this book

Step into the world of asynchronous programming with confidence by conquering the challenges of unclear concepts with this hands-on guide. Using functional examples, this book simplifies the trickiest concepts, exploring goroutines, fibers, futures, and callbacks to help you navigate the vast Rust async ecosystem with ease. You’ll start by building a solid foundation in asynchronous programming and explore diverse strategies for modeling program flow. The book then guides you through concepts like epoll, coroutines, green threads, and callbacks using practical examples. The final section focuses on Rust, examining futures, generators, and the reactor-executor pattern. You’ll apply your knowledge to create your own runtime, solidifying expertise in this dynamic domain. Throughout the book, you’ll not only gain proficiency in Rust's async features but also see how Rust models asynchronous program flow. By the end of the book, you'll possess the knowledge and practical skills needed to actively contribute to the Rust async ecosystem.
Table of Contents (16 chapters)
Free Chapter
1
Part 1:Asynchronous Programming Fundamentals
5
Part 2:Event Queues and Green Threads
8
Part 3:Futures and async/await in Rust

Finishing thoughts

I want to round off this chapter by pointing out some of the advantages and disadvantages of this approach, which we went through in Chapter 2, since we now have first-hand experience with this topic.

First of all, the example we implemented here is an example of what we called a stackful coroutine. Each coroutine (or thread, as we call it in the example implementation) has its own stack. This also means that we can interrupt and resume execution at any point in time. It doesn’t matter if we’re in the middle of a stack frame (in the middle of executing a function); we can simply tell the CPU to save the state we need to the stack, return to a different stack and restore the state it needs there, and resume as if nothing has happened.

You can also see that we have to manage our stacks in some way. In our example, we just create a static stack (much like the OS does when we ask it for a thread, but smaller), but for this to be more efficient than...