Book Image

Asynchronous Programming in Rust

By : Carl Fredrik Samson
5 (2)
Book Image

Asynchronous Programming in Rust

5 (2)
By: Carl Fredrik Samson

Overview of this book

Step into the world of asynchronous programming with confidence by conquering the challenges of unclear concepts with this hands-on guide. Using functional examples, this book simplifies the trickiest concepts, exploring goroutines, fibers, futures, and callbacks to help you navigate the vast Rust async ecosystem with ease. You’ll start by building a solid foundation in asynchronous programming and explore diverse strategies for modeling program flow. The book then guides you through concepts like epoll, coroutines, green threads, and callbacks using practical examples. The final section focuses on Rust, examining futures, generators, and the reactor-executor pattern. You’ll apply your knowledge to create your own runtime, solidifying expertise in this dynamic domain. Throughout the book, you’ll not only gain proficiency in Rust's async features but also see how Rust models asynchronous program flow. By the end of the book, you'll possess the knowledge and practical skills needed to actively contribute to the Rust async ecosystem.
Table of Contents (16 chapters)
Free Chapter
1
Part 1:Asynchronous Programming Fundamentals
5
Part 2:Event Queues and Green Threads
8
Part 3:Futures and async/await in Rust

The ffi module

Let’s start with the modules that don’t depend on any others and work our way from there. The ffi module contains mappings to the syscalls and data structures we need to communicate with the operating system. We’ll also explain how epoll works in detail once we have presented the syscalls.

It’s only a few lines of code, so I’ll place the first part here so it’s easier to keep track of where we are in the file since there’s quite a bit to explain. Open the ffi.rs file and write the following lines of code:

ch04/a-epoll/src/ffi.rs

pub const EPOLL_CTL_ADD: i32 = 1;
pub const EPOLLIN: i32 = 0x1;
pub const EPOLLET: i32 = 1 << 31;
#[link(name = "c")]
extern "C" {
  pub fn epoll_create(size: i32) -> i32;
  pub fn close(fd: i32) -> i32;
  pub fn epoll_ctl(epfd: i32, op: i32, fd: i32, event: *mut Event) -> i32;
  pub fn epoll_wait(epfd: i32, events...