Book Image

Asynchronous Programming in Rust

By : Carl Fredrik Samson
5 (2)
Book Image

Asynchronous Programming in Rust

5 (2)
By: Carl Fredrik Samson

Overview of this book

Step into the world of asynchronous programming with confidence by conquering the challenges of unclear concepts with this hands-on guide. Using functional examples, this book simplifies the trickiest concepts, exploring goroutines, fibers, futures, and callbacks to help you navigate the vast Rust async ecosystem with ease. You’ll start by building a solid foundation in asynchronous programming and explore diverse strategies for modeling program flow. The book then guides you through concepts like epoll, coroutines, green threads, and callbacks using practical examples. The final section focuses on Rust, examining futures, generators, and the reactor-executor pattern. You’ll apply your knowledge to create your own runtime, solidifying expertise in this dynamic domain. Throughout the book, you’ll not only gain proficiency in Rust's async features but also see how Rust models asynchronous program flow. By the end of the book, you'll possess the knowledge and practical skills needed to actively contribute to the Rust async ecosystem.
Table of Contents (16 chapters)
Free Chapter
1
Part 1:Asynchronous Programming Fundamentals
5
Part 2:Event Queues and Green Threads
8
Part 3:Futures and async/await in Rust

Why use an OS-backed event queue?

You already know by now that we need to cooperate closely with the OS to make I/O operations as efficient as possible. Operating systems such as Linux, macOS, and Windows provide several ways of performing I/O, both blocking and non-blocking.

I/O operations need to go through the operating system since they are dependent on resources that our operating system abstracts over. This can be the disk drive, the network card, or other peripherals. Especially in the case of network calls, we’re not only dependent on our own hardware, but we also depend on resources that might reside far away from our own, causing a significant delay.

In the previous chapter, we covered different ways to handle asynchronous operations when programming, and while they’re all different, they all have one thing in common: they need control over when and if they should yield to the OS scheduler when making a syscall.

In practice, this means that syscalls...