Book Image

Asynchronous Programming in Rust

By : Carl Fredrik Samson
5 (2)
Book Image

Asynchronous Programming in Rust

5 (2)
By: Carl Fredrik Samson

Overview of this book

Step into the world of asynchronous programming with confidence by conquering the challenges of unclear concepts with this hands-on guide. Using functional examples, this book simplifies the trickiest concepts, exploring goroutines, fibers, futures, and callbacks to help you navigate the vast Rust async ecosystem with ease. You’ll start by building a solid foundation in asynchronous programming and explore diverse strategies for modeling program flow. The book then guides you through concepts like epoll, coroutines, green threads, and callbacks using practical examples. The final section focuses on Rust, examining futures, generators, and the reactor-executor pattern. You’ll apply your knowledge to create your own runtime, solidifying expertise in this dynamic domain. Throughout the book, you’ll not only gain proficiency in Rust's async features but also see how Rust models asynchronous program flow. By the end of the book, you'll possess the knowledge and practical skills needed to actively contribute to the Rust async ecosystem.
Table of Contents (16 chapters)
Free Chapter
1
Part 1:Asynchronous Programming Fundamentals
5
Part 2:Event Queues and Green Threads
8
Part 3:Futures and async/await in Rust

Definitions

We can broadly categorize abstractions over concurrent operations into two groups:

  1. Cooperative: These are tasks that yield voluntarily either by explicitly yielding or by calling a function that suspends the task when it can’t progress further before another operation has finished (such as making a network call). Most often, these tasks yield to a scheduler of some sort. Examples of this are tasks generated by async/await in Rust and JavaScript.
  2. Non-cooperative: Tasks that don’t necessarily yield voluntarily. In such a system, the scheduler must be able to pre-empt a running task, meaning that the scheduler can stop the task and take control over the CPU even though the task would have been able to do work and progress. Examples of this are OS threads and Goroutines (after GO version 1.14).
Figure 2.1 – Non-cooperative vs. cooperative multitasking

Figure 2.1 – Non-cooperative vs. cooperative multitasking

Note

In a system where the scheduler can pre-empt running...