Book Image

Industrial Automation from Scratch

By : Olushola Akande
Book Image

Industrial Automation from Scratch

By: Olushola Akande

Overview of this book

Industrial automation has become a popular solution for various industries looking to reduce manual labor inputs and costs by automating processes. This book helps you discover the abilities necessary for excelling in this field. The book starts with the basics of industrial automation before progressing to the application of switches, sensors, actuators, and motors, and a direct on-line (DOL) starter and its components, such as circuit breakers, contactors, and overload relay. Next, you'll explore VFDs, their parameter settings, and how they can be wired and programmed for induction motor control. As you advance, you'll learn the wiring and programming of major industrial automation tools – PLCs, HMIs, and SCADA. You’ll also get to grips with process control and measurements (temperature, pressure, level, and flow), along with analog signal processing with hands-on experience in connecting a 4–20 mA transmitter to a PLC. The concluding chapters will help you grasp various industrial network protocols such as FOUNDATION Fieldbus, Modbus, PROFIBUS, PROFINET, and HART, as well as emerging trends in manufacturing (Industry 4.0) and its empowering technologies (such as IoT, AI, and robotics). By the end of this book, you’ll have gained a practical understanding of industrial automation concepts for machine automation and control.
Table of Contents (21 chapters)
1
Part 1: Learning the Concepts and Skills Required to Get Started
8
Part 2: Understanding PLC, HMI, and SCADA
14
Part 3: Process Control, Industrial Network, and Smart Factory

Questions

The following are some questions to test your understanding of this chapter. Ensure you have read and understood the topics in this chapter before attempting the questions:

  1. In a/an ____________ process control, the output does not change the control action.
  2. In a/an ___________ process control, the output has effect on the control action.
  3. In a/an_____________ control, disruption is measured and corrective action is taken to correct any errors before they reach the system.
  4. A _______________ is a device that converts a signal produced by a sensor into a standard signal (4 to 20 mA, 0 to 10 V, or 3 to 15 psi) applicable in process control.
  5. ________________ can be referred to as the target value of the process variable.
  6. ________________ is the difference between the process variable or measured value and the set point.
  7. The devices that the controller operates to keep the process variable at a setpoint are called _________________.
  8. ISA is an...