Book Image

Industrial Automation from Scratch

By : Olushola Akande
Book Image

Industrial Automation from Scratch

By: Olushola Akande

Overview of this book

Industrial automation has become a popular solution for various industries looking to reduce manual labor inputs and costs by automating processes. This book helps you discover the abilities necessary for excelling in this field. The book starts with the basics of industrial automation before progressing to the application of switches, sensors, actuators, and motors, and a direct on-line (DOL) starter and its components, such as circuit breakers, contactors, and overload relay. Next, you'll explore VFDs, their parameter settings, and how they can be wired and programmed for induction motor control. As you advance, you'll learn the wiring and programming of major industrial automation tools – PLCs, HMIs, and SCADA. You’ll also get to grips with process control and measurements (temperature, pressure, level, and flow), along with analog signal processing with hands-on experience in connecting a 4–20 mA transmitter to a PLC. The concluding chapters will help you grasp various industrial network protocols such as FOUNDATION Fieldbus, Modbus, PROFIBUS, PROFINET, and HART, as well as emerging trends in manufacturing (Industry 4.0) and its empowering technologies (such as IoT, AI, and robotics). By the end of this book, you’ll have gained a practical understanding of industrial automation concepts for machine automation and control.
Table of Contents (21 chapters)
1
Part 1: Learning the Concepts and Skills Required to Get Started
8
Part 2: Understanding PLC, HMI, and SCADA
14
Part 3: Process Control, Industrial Network, and Smart Factory

An overview of a VFD

A VFD is a device used to vary the speed of Asynchronous or Synchronous (AC) electric motors by varying the frequency and voltage supplied. A VFD can also be referred to as an Adjustable Speed Drive (ASD) or inverter. It is the most effective way of controlling the speed of an induction motor. The principle of operation of a VFD is based on the fact that the speed of an induction motor is directly proportional to the frequency of the voltage supplied to the motor. When frequency increases, speed also increases, and when frequency reduces, the speed will also reduce. A synchronous motor runs at synchronous speed (the speed of the rotating magnetic field of the stator) while an asynchronous (induction) motor’s speed is slightly less than synchronous speed. In the previous chapter, it was mentioned that synchronous speed is determined by the frequency of the voltage source and the number of poles, as shown by the following formula:

Synchronous speed = 120f...