Book Image

Python Object-Oriented Programming - Fourth Edition

By : Steven F. Lott, Dusty Phillips
2 (1)
Book Image

Python Object-Oriented Programming - Fourth Edition

2 (1)
By: Steven F. Lott, Dusty Phillips

Overview of this book

Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning. Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python’s classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python’s exception handling and how functional programming intersects with OOP. Two very powerful automated testing systems, unittest and pytest, are introduced. The final chapter provides a detailed discussion of Python's concurrent programming ecosystem. By the end of the book, you will have a thorough understanding of how to think about and apply object-oriented principles using Python syntax and be able to confidently create robust and reliable programs.
Table of Contents (17 chapters)
Other Books You May Enjoy

The Strategy pattern

The Strategy pattern is a common demonstration of abstraction in object-oriented programming. The pattern implements different solutions to a single problem, each in a different object. The core class can then choose the most appropriate implementation dynamically at runtime.

Typically, different algorithms have different trade-offs; one might be faster than another, but uses a lot more memory, while a third algorithm may be most suitable when multiple CPUs are present or a distributed system is provided.

Here is the Strategy pattern in UML:

Figure 11.4: Strategy pattern in UML

The Core code connecting to the Strategy abstraction simply needs to know that it is dealing with some kind of class that fits the Strategy interface for this particular action. Each of the implementations should perform the same task, but in different ways. The implementation interfaces need to be identical, and it's often helpful to leverage an...