Book Image

Python Object-Oriented Programming - Fourth Edition

By : Steven F. Lott, Dusty Phillips
2 (2)
Book Image

Python Object-Oriented Programming - Fourth Edition

2 (2)
By: Steven F. Lott, Dusty Phillips

Overview of this book

Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning. Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python’s classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python’s exception handling and how functional programming intersects with OOP. Two very powerful automated testing systems, unittest and pytest, are introduced. The final chapter provides a detailed discussion of Python's concurrent programming ecosystem. By the end of the book, you will have a thorough understanding of how to think about and apply object-oriented principles using Python syntax and be able to confidently create robust and reliable programs.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

The Adapter pattern

Unlike most of the patterns we reviewed in the previous chapter, the Adapter pattern is designed to interact with existing code. We would not design a brand new set of objects that implement the Adapter pattern. Adapters are used to allow two preexisting objects to work together, even if their interfaces are not compatible. Like the display adapters that allow you to plug your Micro USB charging cable into a USB-C phone, an adapter object sits between two different interfaces, translating between them on the fly. The adapter object's sole purpose is to perform this translation. Adapting may entail a variety of tasks, such as converting arguments to a different format, rearranging the order of arguments, calling a differently named method, or supplying default arguments.

In structure, the Adapter pattern is similar to a simplified decorator pattern. Decorators typically provide the same interface that they replace, whereas adapters map between two different...