Book Image

Python Object-Oriented Programming - Fourth Edition

By : Steven F. Lott, Dusty Phillips
2 (2)
Book Image

Python Object-Oriented Programming - Fourth Edition

2 (2)
By: Steven F. Lott, Dusty Phillips

Overview of this book

Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning. Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python’s classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python’s exception handling and how functional programming intersects with OOP. Two very powerful automated testing systems, unittest and pytest, are introduced. The final chapter provides a detailed discussion of Python's concurrent programming ecosystem. By the end of the book, you will have a thorough understanding of how to think about and apply object-oriented principles using Python syntax and be able to confidently create robust and reliable programs.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Multiprocessing

Threads exist within a single OS process; that's why they can share access to common objects. We can do concurrent computing at the process level, also. Unlike threads, separate processes cannot directly access variables set up by other processes. This independence is helpful because each process has its own GIL and its own private pool of resources. On a modern multi-core processor, a process may have its own core, permitting concurrent work with other cores.

The multiprocessing API was originally designed to mimic the threading API. However, the multiprocessing interface has evolved, and in recent versions of Python, it supports more features more robustly. The multiprocessing library is designed for when CPU-intensive jobs need to happen in parallel and multiple cores are available. Multiprocessing is not as useful when the processes spend a majority of their time waiting on I/O (for example, network, disk, database, or keyboard), but it is the way...