Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Linear Neural Networks

In this chapter, we will go over some of the concepts in machine learning. It is expected that you have previously studied and have an understanding of machine learning. So this chapter will serve as a refresher for some of the concepts that will be needed throughout this book, rather than a comprehensive study of all the machine learning approaches.

In this chapter, we will focus on linear neural networks, which are the simplest type of neural networks and are used for tasks such as linear regression, polynomial regression, logistic regression, and softmax regression, which are used most frequently in statistical learning.

We use regression to explain the relationship between one or more independent variables and a dependent variable. The concepts we will learn in this chapter are crucial for furthering our understanding of how machine learning works before...