Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Feedforward Neural Networks

In the previous chapter, we covered linear neural networks, which have proven to be effective for problems such as regression and so are widely used in the industry. However, we also saw that they have their limitations and are unable to work effectively on higher-dimensional problems.

In this chapter, we will take an in-depth look at the multilayer perceptron (MLP), a type of feedforward neural network (FNN). We will start by taking a look at how biological neurons process information, then we will move onto mathematical models of biological neurons. The artificial neural networks (ANNs) we will study in this book are made up of mathematical models of biological neurons (we will learn more about this shortly). Once we have built a foundation, we will move on to understanding how MLPs—which are the FNNs—work and their involvement with...