Book Image

Go Cookbook

By : Aaron Torres
Book Image

Go Cookbook

By: Aaron Torres

Overview of this book

Go (a.k.a. Golang) is a statically-typed programming language first developed at Google. It is derived from C with additional features such as garbage collection, type safety, dynamic-typing capabilities, additional built-in types, and a large standard library. This book takes off where basic tutorials on the language leave off. You can immediately put into practice some of the more advanced concepts and libraries offered by the language while avoiding some of the common mistakes for new Go developers. The book covers basic type and error handling. It explores applications that interact with users, such as websites, command-line tools, or via the file system. It demonstrates how to handle advanced topics such as parallelism, distributed systems, and performance tuning. Lastly, it finishes with reactive and serverless programming in Go.
Table of Contents (14 chapters)

Using the bytes and strings packages

The bytes and string packages have a number of useful helpers to work with and convert between strings and byte types. They allow the creation of buffers that work with a number of common I/O interfaces.

Getting ready

Refer to the Getting ready section's steps in the Using the common I/O interfaces recipe.

How to do it...

These steps cover writing and running your application:

  1. From your terminal/console application, create a new directory called chapter1/bytestrings.
  2. Navigate to this directory.

  1. Copy tests from https://github.com/agtorre/go-cookbook/tree/master/chapter1/bytesstrings, or use this as an exercise to write some of your own code!
  2. Create a file called buffer.go with the following contents:
        package bytestrings

import (
"bytes"
"io"
"io/ioutil"
)

// Buffer demonstrates some tricks for initializing bytes
//Buffers
// These buffers implement an io.Reader interface
func Buffer(rawString string) *bytes.Buffer {

// we'll start with a string encoded into raw bytes
rawBytes := []byte(rawString)

// there are a number of ways to create a buffer from
// the raw bytes or from the original string
var b = new(bytes.Buffer)
b.Write(rawBytes)

// alternatively
b = bytes.NewBuffer(rawBytes)

// and avoiding the intial byte array altogether
b = bytes.NewBufferString(rawString)

return b
}

// ToString is an example of taking an io.Reader and consuming
// it all, then returning a string
func toString(r io.Reader) (string, error) {
b, err := ioutil.ReadAll(r)
if err != nil {
return "", err
}
return string(b), nil
}
  1. Create a file called bytes.go with the following contents:
        package bytestrings

import (
"bufio"
"bytes"
"fmt"
)

// WorkWithBuffer will make use of the buffer created by the
// Buffer function
func WorkWithBuffer() error {
rawString := "it's easy to encode unicode into a byte
array"

b := Buffer(rawString)

// we can quickly convert a buffer back into byes with
// b.Bytes() or a string with b.String()
fmt.Println(b.String())

// because this is an io Reader we can make use of
// generic io reader functions such as
s, err := toString(b)
if err != nil {
return err
}
fmt.Println(s)

// we can also take our bytes and create a bytes reader
// these readers implement io.Reader, io.ReaderAt,
// io.WriterTo, io.Seeker, io.ByteScanner, and
// io.RuneScanner interfaces
reader := bytes.NewReader([]byte(rawString))

// we can also plug it into a scanner that allows
// buffered reading and tokenzation
scanner := bufio.NewScanner(reader)
scanner.Split(bufio.ScanWords)

// iterate over all of the scan events
for scanner.Scan() {
fmt.Print(scanner.Text())
}

return nil
}
  1. Create a file called string.go with the following contents:
        package bytestrings

import (
"fmt"
"io"
"os"
"strings"
)

// SearchString shows a number of methods
// for searching a string
func SearchString() {
s := "this is a test"

// returns true because s contains
// the word this
fmt.Println(strings.Contains(s, "this"))

// returns true because s contains the letter a
// would also match if it contained b or c
fmt.Println(strings.ContainsAny(s, "abc"))

// returns true because s starts with this
fmt.Println(strings.HasPrefix(s, "this"))

// returns true because s ends with this
fmt.Println(strings.HasSuffix(s, "test"))
}

// ModifyString modifies a string in a number of ways
func ModifyString() {
s := "simple string"

// prints [simple string]
fmt.Println(strings.Split(s, " "))

// prints "Simple String"
fmt.Println(strings.Title(s))

// prints "simple string"; all trailing and
// leading white space is removed
s = " simple string "
fmt.Println(strings.TrimSpace(s))
}

// StringReader demonstrates how to create
// an io.Reader interface quickly with a string
func StringReader() {
s := "simple stringn"
r := strings.NewReader(s)

// prints s on Stdout
io.Copy(os.Stdout, r)
}
  1. Create a new directory named example.
  2. Navigate to example.
  3. Create a main.go file with the following contents and ensure that you modify the interfaces imported to use the path you set up in step 2:
        package main

import "github.com/agtorre/go-cookbook/chapter1/bytestrings"

func main() {
err := bytestrings.WorkWithBuffer()
if err != nil {
panic(err)
}

// each of these print to stdout
bytestrings.SearchString()
bytestrings.ModifyString()
bytestrings.StringReader()
}
  1. Run go run main.go.
  2. You may also run these:
      go build
./example

You should see the following output:

        $ go run main.go
it's easy to encode unicode into a byte array ??
it's easy to encode unicode into a byte array ??
it'seasytoencodeunicodeintoabytearray??true
true
true
true
[simple string]
Simple String
simple string
simple string
  1. If you copied or wrote your own tests, go up one directory and run go test, and ensure all tests pass.

How it works...

The bytes library provides a number of convenience functions when working with data. A buffer, for example, is far more flexible than an array of bytes when working with stream processing libraries or methods. Once you've created a buffer, it can be used to satisfy an io.Reader interface so you can take advantage of ioutil functions to manipulate the data. For steaming applications, you'd probably want to use a buffer and a scanner. The bufio package comes in handy for these cases. Sometimes, using an array or slice is more appropriate for smaller datasets or when you have a lot of memory on your machine.

Go provides a lot of flexibility in converting between interfaces with these basic types--it's relatively simple to convert between strings and bytes. When working with strings, the strings package provides a number of convenience functions to work with, search, and manipulate strings. In some cases, a good regular expression may be appropriate, but most of the time, the strings and strconv packages are sufficient. The strings package allows you to make a string look like a title, split it into an array, or trim whitespace. It also provides a Reader interface of its own that can be used instead of the bytes package reader type.