Book Image

Applying Math with Python

By : Sam Morley
Book Image

Applying Math with Python

By: Sam Morley

Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Table of Contents (12 chapters)

Executing a Jupyter notebook as a script

Jupyter notebooks are a popular medium for writing Python code for scientific and data-based applications. A Jupyter notebook is really a sequence of blocks that are stored in a file in JavaScript Object Notation (JSON) with the ipynb extension. Each block can be one of several different types, such as code or markdown. These notebooks are typically accessed through a web application that interprets the blocks and executes the code in a background kernel that then returns the results to the web application. This is great if you are working on a personal PC, but what if you want to run the code contained within a notebook remotely on a server? In this case, it might not even be possible to access the web interface provided by the Jupyter notebook software. The papermill package allows us to parameterize and execute notebooks from the command line.

In this recipe, we'll learn how to execute a Jupyter notebook from the command...