#### Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Preface
Basic Packages, Functions, and Concepts
Free Chapter
Mathematical Plotting with Matplotlib
Working with Randomness and Probability
Geometric Problems
Finding Optimal Solutions
Miscellaneous Topics
Other Books You May Enjoy

# How to do it...

The following steps show you how to use the Pint package to keep track of units in calculations:

1. First, we need to create a UnitRegistry object:
`ureg = pint.UnitRegistry(system="mks")`
1. To create a quantity with a unit, we multiply the number by the appropriate attribute of the registry object:
`distance = 5280 * ureg.feet`
1. We can change the units of the quantity using one of the available conversion methods:
`print(distance.to("miles"))print(distance.to_base_units())print(distance.to_base_units().to_compact())`

The output of these print statements is as follows:

`0.9999999999999999 mile1609.3439999999998 meter1.6093439999999999 kilometer`
1. We wrap a routine to make it expect an argument in seconds and output a result in meters:
`@ureg.wraps(ureg.meter, ureg.second)def calc_depth(dropping_time...`