Book Image

Applying Math with Python

By : Sam Morley
Book Image

Applying Math with Python

By: Sam Morley

Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Table of Contents (12 chapters)

Coloring a network

Networks are also useful in scheduling problems, where you need to arrange activities into different slots so that there are no conflicts. For example, we could use networks to schedule classes to make sure that students who are taking different options do not have to be in two classes at once. In this scenario, the nodes will represent the different classes and the edges will indicate that there are students taking both classes. The process we use to solve these kinds of problems is called network coloring. This process involves assigning the fewest possible colors to the nodes in a network so that no two adjacent nodes have the same color.

In this recipe, we will learn how to color a network to solve a simple scheduling problem.

Getting ready

For this recipe, we need the NetworkX package imported as nx and the Matplotlib pyplot module imported as plt.

How to do it...

Follow these steps to solve a network coloring...