Book Image

Applying Math with Python

By : Sam Morley
Book Image

Applying Math with Python

By: Sam Morley

Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Table of Contents (12 chapters)
Regression and Forecasting

One of the most important tasks that a statistician or data scientist has is to generate a systematic understanding of the relationship between two sets of data. This can mean a "continuous" relationship between two sets of data, where one value depends directly on the value of another variable. Alternatively, it can mean a categorical relationship, where one value is categorized according to another. The tool for working with these kinds of problems is regression. In its most basic form, regression involves fitting a straight line through a scatter plot of the two sets of data and performing some analysis to see how well this line "fits" the data. Of course, we often need something more sophisticated to model more complex relationships that exist in the real world.

Time series represent a specialized class of these regression type problems, where we have a value that is evolving...