Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Java Coding Problems
  • Table Of Contents Toc
  • Feedback & Rating feedback
Java Coding Problems

Java Coding Problems - Second Edition

By : Anghel Leonard
4.5 (13)
close
close
Java Coding Problems

Java Coding Problems

4.5 (13)
By: Anghel Leonard

Overview of this book

The super-fast evolution of the JDK between versions 12 and 21 has made the learning curve of modern Java steeper, and increased the time needed to learn it. This book will make your learning journey quicker and increase your willingness to try Java’s new features by explaining the correct practices and decisions related to complexity, performance, readability, and more. Java Coding Problems takes you through Java’s latest features but doesn’t always advocate the use of new solutions — instead, it focuses on revealing the trade-offs involved in deciding what the best solution is for a certain problem. There are more than two hundred brand new and carefully selected problems in this second edition, chosen to highlight and cover the core everyday challenges of a Java programmer. Apart from providing a comprehensive compendium of problem solutions based on real-world examples, this book will also give you the confidence to answer questions relating to matching particular streams and methods to various problems. By the end of this book you will have gained a strong understanding of Java’s new features and have the confidence to develop and choose the right solutions to your problems.
Table of Contents (16 chapters)
close
close
1
Text Blocks, Locales, Numbers, and Math
Lock Free Chapter
2
Objects, Immutability, Switch Expressions, and Pattern Matching
chevron up
14
Other Books You May Enjoy
15
Index

50. Implementing an immutable stack

A common coding challenge in interviews is this: Implement an immutable stack in Java.

Being an abstract data type, a stack needs at least this contract:

public interface Stack<T> extends Iterable<T> {
  boolean isEmpty();
  Stack<T> push(T value);
  Stack<T> pop();
  T peek();    
}

Having this contract, we can focus on the immutable implementation. Generally speaking, an immutable data structure stays the same until an operation attempts to change it (for instance, to add, put, remove, delete, push, and so on). If an operation attempts to alter the content of an immutable data structure, a new instance of that data structure must be created and used by that operation, while the previous instance remains unchanged.

Now, in our context, we have two operations that can alter the stack content: push and pop. The push operation should return a new stack containing the pushed element, while the pop operation should return the previous stack. But, in order to accomplish this, we need to start from somewhere, so we need an empty initial stack. This is a singleton stack that can be implemented as follows:

private static class EmptyStack<U> implements Stack<U> {
  @Override
    public Stack<U> push(U u) {
      return new ImmutableStack<>(u, this);
    }
    @Override
    public Stack<U> pop() {
      throw new UnsupportedOperationException(
        "Unsupported operation on an empty stack");
    } 
    @Override
    public U peek() {
      throw new UnsupportedOperationException (
        "Unsupported operation on an empty stack");
    }
    @Override
    public boolean isEmpty() {
      return true;
    }
    @Override
    public Iterator<U> iterator() {
      return new StackIterator<>(this);
  }
}

The StackIterator is a trivial implementation of the Java Iterator. Nothing fancy here:

private static class StackIterator<U> implements Iterator<U> {
  private Stack<U> stack;
  public StackIterator(final Stack<U> stack) {
    this.stack = stack;
  }
  @Override
  public boolean hasNext() {
    return !this.stack.isEmpty();
  }
  @Override
  public U next() {
    U e = this.stack.peek();
    this.stack = this.stack.pop();
    return e;
  }
  @Override
  public void remove() {
  }
}

So far, we have the Iterator and an empty stack singleton. Finally, we can implement the logic of the immutable stack as follows:

public class ImmutableStack<E> implements Stack<E> {
  private final E head;
  private final Stack<E> tail;
  private ImmutableStack(final E head, final Stack<E> tail) {
    this.head = head;
    this.tail = tail;
  }
  public static <U> Stack<U> empty(final Class<U> type) {
    return new EmptyStack<>();
  }
  @Override
  public Stack<E> push(E e) {
    return new ImmutableStack<>(e, this);
  }
  @Override
  public Stack<E> pop() {
    return this.tail;
  }    
  @Override
  public E peek() {
    return this.head;
  }
  @Override
  public boolean isEmpty() {
    return false;
  }
  @Override
  public Iterator<E> iterator() {
    return new StackIterator<>(this);
  }
  // iterator code
  // empty stack singleton code
}

Creating a stack starts by calling theImmutableStack.empty() method, as follows:

Stack<String> s = ImmutableStack.empty(String.class);

In the bundled code, you can how this stack can be used further.

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Java Coding Problems
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon