Book Image

Java Coding Problems - Second Edition

By : Anghel Leonard
Book Image

Java Coding Problems - Second Edition

By: Anghel Leonard

Overview of this book

The super-fast evolution of the JDK between versions 12 and 21 has made the learning curve of modern Java steeper, and increased the time needed to learn it. This book will make your learning journey quicker and increase your willingness to try Java’s new features by explaining the correct practices and decisions related to complexity, performance, readability, and more. Java Coding Problems takes you through Java’s latest features but doesn’t always advocate the use of new solutions — instead, it focuses on revealing the trade-offs involved in deciding what the best solution is for a certain problem. There are more than two hundred brand new and carefully selected problems in this second edition, chosen to highlight and cover the core everyday challenges of a Java programmer. Apart from providing a comprehensive compendium of problem solutions based on real-world examples, this book will also give you the confidence to answer questions relating to matching particular streams and methods to various problems. By the end of this book you will have gained a strong understanding of Java’s new features and have the confidence to develop and choose the right solutions to your problems.
Table of Contents (16 chapters)
1
Text Blocks, Locales, Numbers, and Math
Free Chapter
2
Objects, Immutability, Switch Expressions, and Pattern Matching
14
Other Books You May Enjoy
15
Index

60. Rewriting equals() via type patterns for instanceof

It is not mandatory to rely on instanceof to implement the equals() method, but it is a convenient approach to write something as follows:

public class MyPoint {
  private final int x;
  private final int y;
  private final int z;
  public MyPoint(int x, int y, int z) {
    this.x = x;
    this.y = y;
    this.z = z;
  }
  @Override
  public boolean equals(Object obj) {
    if (this == obj) {
      return true;
    }
    if (!(obj instanceof MyPoint)) {
      return false;
    }
    final MyPoint other = (MyPoint) obj;
    return (this.x == other.x && this.y == other.y
      && this.z == other.z); 
  }       
}

If you are a fan of the previous approach for implementing equals(), then you’ll love rewriting it via a type pattern for instanceof. Check out the following snippet:

@Override
public boolean equals(Object obj) {
  if (this == obj) {
    return true;
  }
  return obj instanceof MyPoint other
    && this.x == other.x && this.y == other.y
    && this.z == other.z; 
}

If MyPoint is generic (MyPoint<E>) then simply use a wildcard as follows (more details are available in the next problem):

return obj instanceof MyPoint<?> other
  && this.x == other.x && this.y == other.y
  && this.z == other.z;

Cool, right?! However, pay attention that using instanceof to express the equals() contract imposes the usage of a final class of final equals(). Otherwise, if subclasses are allowed to override equals(), then instanceof may cause transitivity/symmetry bugs. A good approach is to pass equals() through a dedicated verifier such as equals verifier (https://github.com/jqno/equalsverifier), which is capable of checking the validity of the equals() and hashCode() contracts.