Book Image

Pretrain Vision and Large Language Models in Python

By : Emily Webber
4.5 (2)
Book Image

Pretrain Vision and Large Language Models in Python

4.5 (2)
By: Emily Webber

Overview of this book

Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization. With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you’ll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models. You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines. By the end of this book, you’ll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future.
Table of Contents (23 chapters)
1
Part 1: Before Pretraining
5
Part 2: Configure Your Environment
9
Part 3: Train Your Model
13
Part 4: Evaluate Your Model
17
Part 5: Deploy Your Model

Summary

In this chapter, we learned about the key features of Amazon SageMaker for large-scale distributed training. We looked at how to optimize your script, from importing packages to parsing arguments, writing code, invoking your script with mpi, writing to CloudWatch logs, checkpointing, working with the SM estimator, and so on. We covered key usability features to make SageMaker more fun and friendly to work with, such as warm pools for rapid experimentation, SSM and SSH in training instances, and tracking jobs. Finally, we learned about backend optimizations for distributed training, such as SMDDP collectives, using it both standalone and in combination with the model parallel package.

In the next chapter, we’ll explore even more advanced topics in distributed training!