Book Image

Modern Time Series Forecasting with Python

By : Manu Joseph
5 (1)
Book Image

Modern Time Series Forecasting with Python

5 (1)
By: Manu Joseph

Overview of this book

We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.
Table of Contents (26 chapters)
1
Part 1 – Getting Familiar with Time Series
6
Part 2 – Machine Learning for Time Series
13
Part 3 – Deep Learning for Time Series
20
Part 4 – Mechanics of Forecasting

Creating GFMs

Training a GFM is very straightforward. While we were training LFMs in Chapter 8, Forecasting Time Series with Machine Learning Models, we were looping over different households in the London Smart Meters dataset and training a model for each household. However, if we just take all the households into a single dataframe (our dataset is already that way) and train a single model on it, we get a GFM. One thing we want to keep in mind is to make sure that all the time series in the dataset have the same frequency. In other words, if we mix daily time series with weekly ones while training these models, the performance drop will be noticeable – especially if we are using time-varying features and other time-based information. For a purely autoregressive model, mixing time series in this way is much less of a problem.

Notebook alert

To follow along with the complete code, use the notebook named 01-Global Forecasting Models-ML.ipynb in the chapter10 folder.

...