Book Image

Modern Time Series Forecasting with Python

By : Manu Joseph
5 (1)
Book Image

Modern Time Series Forecasting with Python

5 (1)
By: Manu Joseph

Overview of this book

We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.
Table of Contents (26 chapters)
1
Part 1 – Getting Familiar with Time Series
6
Part 2 – Machine Learning for Time Series
13
Part 3 – Deep Learning for Time Series
20
Part 4 – Mechanics of Forecasting

Neural Basis Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS)

The first model that used some components from DL (we can’t call it DL because it is essentially a mix of DL and classical statistics) and made a splash in the field was a model that won the M4 competition (univariate) in 2018. This was a model by Slawek Smyl from Uber (at the time) and was a Frankenstein-style mix of exponential smoothing and an RNN, dubbed ES-RNN (Further reading has links to a newer and faster implementation of the model that uses GPU acceleration). This led to Makridakis et al. putting forward an argument that “hybrid approaches and combinations of methods are the way forward.” The creators of the N-BEATS model aspired to challenge this conclusion by designing a pure DL architecture for time series forecasting. They succeeded in this when they created a model that beat all other methods in the M4 competition (although they didn’t publish it in time to...