Book Image

Modern Time Series Forecasting with Python

By : Manu Joseph
5 (1)
Book Image

Modern Time Series Forecasting with Python

5 (1)
By: Manu Joseph

Overview of this book

We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.
Table of Contents (26 chapters)
1
Part 1 – Getting Familiar with Time Series
6
Part 2 – Machine Learning for Time Series
13
Part 3 – Deep Learning for Time Series
20
Part 4 – Mechanics of Forecasting

Handling longer periods of missing data

We saw some techniques for handling missing data earlier – forward and backward filling, interpolation, and so on. Those techniques usually work if there are one or two missing data points. But if a large section of data is missing, then these simple techniques fall short.

Notebook alert

To follow along with the complete code for missing data imputation, use the 03 - Handling Missing Data (Long Gaps).ipynb notebook in the chapter02 folder.

Let’s read blocks 0-7 parquet from memory:

block_df = pd.read_parquet("data/london_smart_meters/preprocessed/london_smart_meters_merged_block_0-7.parquet")

The data that we have saved is in compact form. We need to convert it into expanded form because it is easier to work with time series data in that form. Since we only need a subset of the time series (for faster demonstration purposes), we are just extracting one block from these seven blocks. To convert compact form...