Book Image

Modern Time Series Forecasting with Python

By : Manu Joseph
5 (1)
Book Image

Modern Time Series Forecasting with Python

5 (1)
By: Manu Joseph

Overview of this book

We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.
Table of Contents (26 chapters)
1
Part 1 – Getting Familiar with Time Series
6
Part 2 – Machine Learning for Time Series
13
Part 3 – Deep Learning for Time Series
20
Part 4 – Mechanics of Forecasting

Detecting and treating outliers

An outlier, as its name suggests, is an observation that lies at an abnormal distance from the rest of the observations. If we are looking at a data generating process (DGP) as a stochastic process that generates the time series, the outliers are the points that have the least probability of being generated from the DGP. This can be for many reasons, including faulty measurement equipment, incorrect data entry, and black-swan events, to name a few. Being able to detect such outliers and treat them may help your forecasting model understand the data better.

Outlier/anomaly detection is a specialized field itself in time series, but in this book, we are going to restrict ourselves to simpler techniques of identifying and treating outliers. This is because our main aim is not to detect outliers, but to clean the data for our forecasting models to perform better. If you want to learn more about anomaly detection, head over to the Further reading section...