Book Image

Learning C# by Developing Games with Unity 2020 - Fifth Edition

By : Harrison Ferrone
Book Image

Learning C# by Developing Games with Unity 2020 - Fifth Edition

By: Harrison Ferrone

Overview of this book

Over the years, the Learning C# by Developing Games with Unity series has established itself as a popular choice for getting up to speed with C#, a powerful and versatile programming language that can be applied in a wide array of application areas. This book presents a clear path for learning C# programming from the ground up without complex jargon or unclear programming logic, all while building a simple game with Unity. This fifth edition has been updated to introduce modern C# features with the latest version of the Unity game engine, and a new chapter has been added on intermediate collection types. Starting with the basics of software programming and the C# language, you’ll learn the core concepts of programming in C#, including variables, classes, and object-oriented programming. Once you’ve got to grips with C# programming, you’ll enter the world of Unity game development and discover how you can create C# scripts for simple game mechanics. Throughout the book, you’ll gain hands-on experience with programming best practices to help you take your Unity and C# skills to the next level. By the end of this book, you’ll be able to leverage the C# language to build your own real-world Unity game development projects.
Table of Contents (16 chapters)

Type conversions

We've already seen that variables can only hold values of their declared types, but there will be situations where you'll need to combine variables of different types. In programming terminology, these are called conversions, and they come in two main flavors:

  • Implicit conversions take place automatically, usually when a smaller value will fit into another variable type without any rounding. For example, any integer can be implicitly converted into a double or float without additional code:
float implicitConversion = 3;
  • Explicit conversions are needed when there is a risk of losing a variable's information during the conversion. For example, if we wanted to convert a double into an int, we would have to explicitly cast (convert) it by adding the destination type in parentheses before the value we want to convert. This tells the compiler that we are aware that data (or precision) might be lost. 

In this explicit conversion, 3...