Book Image

Software Architecture with C++

By : Adrian Ostrowski, Piotr Gaczkowski
Book Image

Software Architecture with C++

By: Adrian Ostrowski, Piotr Gaczkowski

Overview of this book

Software architecture refers to the high-level design of complex applications. It is evolving just like the languages we use, but there are architectural concepts and patterns that you can learn to write high-performance apps in a high-level language without sacrificing readability and maintainability. If you're working with modern C++, this practical guide will help you put your knowledge to work and design distributed, large-scale apps. You'll start by getting up to speed with architectural concepts, including established patterns and rising trends, then move on to understanding what software architecture actually is and start exploring its components. Next, you'll discover the design concepts involved in application architecture and the patterns in software development, before going on to learn how to build, package, integrate, and deploy your components. In the concluding chapters, you'll explore different architectural qualities, such as maintainability, reusability, testability, performance, scalability, and security. Finally, you will get an overview of distributed systems, such as service-oriented architecture, microservices, and cloud-native, and understand how to apply them in application development. By the end of this book, you'll be able to build distributed services using modern C++ and associated tools to deliver solutions as per your clients' requirements.
Table of Contents (24 chapters)
1
Section 1: Concepts and Components of Software Architecture
5
Section 2: The Design and Development of C++ Software
6
Architectural and System Design
10
Section 3: Architectural Quality Attributes
15
Section 4: Cloud-Native Design Principles
21
About Packt

Database per service pattern

Storing and handling data is a complex issue in every software architecture. Wrong choices may impact scalability, performance, or maintenance costs. With microservices, there's an added complexity coming from the fact that we want the microservices to be loosely coupled.

This leads to a design pattern where each microservice connects to its own database so it is independent of any changes introduced by the other services. While this pattern adds some overhead, its additional benefit is that you can optimize the schema and indexes for each microservice individually.

Since databases tend to be pretty huge pieces of infrastructure, this approach may not be feasible, so sharing a database between microservices is an understandable trade-off.